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Abstract—The recent emergence of ultra high-speed networks
up to 100 Gbps has posed numerous challenges and has led to
many investigations on efficient protocols to saturate 100 Gbps
links. However, end-to-end data transfers involve many compo-
nents, not only protocols, affecting overall transfer performance.
These components include a disk I/O subsystem, additional
computation associated with data streams, and network adapter
capacities. For example, achievable bandwidth by TCP may not
be implementable if disk I/O or CPU becomes a bottleneck in
end-to-end data transfer. In this paper, we first model all the
system components involved in end-to-end data transfer as a
graph. We then formulate the problem whose goal is to achieve
maximum data transfer throughput using parallel data flows. Our
contributions lie in how to optimize data transfers considering all
involving system components rather than in accurately modeling
involving system components. Our proposed formulations and
solutions are evaluated through experiments on the ESnet 100G
testbed. The experimental results show that our approach is
several times faster than Globus Online – 8x faster for datasets
with many 10MB files and 3-4x faster for other datasets of larger
size files.

I. INTRODUCTION

Scientific workflows are getting more data-intensive as
technology advances in sensors, sequencers, detectors, etc.
make abundant data available for analysis. In addition, dis-
tributed high-performance computing resources, such as su-
percomputers, make data movement among geographically dis-
tributed sites a major factor that should be taken into account
for efficient and reliable scientific workflow management.
End-to-end data transfers involve many components affecting
the overall transfer performance. Disk-to-disk data transfers
start with disk reads, go through data processing and data
transmission over network, and end up with disk writes. But
the process is not simple. For example, disk reads may involve
multiple disks on which data are distributed randomly or with
some rules.

The recent emergence of high-speed network up to 100
Gbps has posed considerable challenges and many studies
have been conducted on new 100G high-speed networks. In
[1], various data transfer middleware such as GridFTP [2] and
SRM [3] has been evaluated to determine whether they can
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saturate a 100G network link. The results in [1] show that
they can achieve 80-90 Gbps in case of memory-to-memory
data transfer, where the system’s RAM buffer cache is big
enough to hold the entire dataset, so the dataset is loaded into
memory before data transfer.

Such performance improvements have resulted from sev-
eral research areas. First, the attempts to optimize network
protocols have brought enhanced network throughput. Globus
eXtensible Input/Output System (XIO) [4] provides a frame-
work on which applications do not have to care about what
protocols are best for the data transfer over the networks.
RDMA-based protocols have been evaluated compared with
common protocols such as TCP for high-performance data
transfers [5]. The results show that RDMA-based protocols
can achieve 10 Gbps data transfer with much lower operating
system overheads. Another research area focuses on exploiting
multiple flows to achieve high-performance data transfer. For
example, GridFTP utilizes pipelining [6] and concurrency [7],
to offset protocol overhead for small files.

However, because of the lack of a holistic approach to end-
to-end data transfer, achieving high-performance data transfer
is difficult in varying hardware and software environments.
End systems are becoming more and more complex and
heterogeneous. System hierarchy is becoming deep and com-
plex with multi-dimensional topologies. Applications must be
smart enough to take advantage of parallelism in various sub-
systems. So far, manual hardware and software tuning have
been needed in order to figure out what configurations are to
be set to meet the required data transfer rate. In this paper,
we address this problem by modeling system components in-
volved in data transfer and solving mathematically formulated
problems.

In this paper, we focus on optimizing parallel flows and
CPU loads in end-to-end data transfers. We show how the
throughput for datasets with many files can be improved
through optimizing the number of parallel flows under con-
straints of CPU, disk I/O, and so on. For many applications, the
individual file sizes in the data set are still small with respect
to increasing bandwidth-delay products even though the total
volume of the datasets have increased significantly in the past
decade. For large files, the approach of splitting a file into
multiple chunks and transferring the chunks simultaneously
improves the performance. However, the same approach does
not work with small files, or even hurt the performance. In this
paper, we show that our approach improves the performance
significantly by optimizing parallel data flows.



The remainder of this paper is organized as follows. In
Section II, we describe the system modeling for the optimiza-
tion problem formulations and we formulate the problem. In
Section III, we evaluate proposed formulations and solutions
through extensive experiments . In Section IV, we summarize
our work and briefly discuss future work.

II. END-TO-END TRANSFER OPTIMIZATION

In this section, we describe how to model system compo-
nents relevant to end-to-end data transfer and we formulate the
problem mathematically based on models.

A. System Modeling

Our target system is composed of two clusters of hosts.
Two clusters are connected through networks consisting of
multiple domains. Any host in one cluster can send data to
any host in the other cluster over the networks. One host
has multiple CPU cores and is connected to multiple disks.
In addition, more than one network interface controller (NIC)
may exist for achieving higher bandwidth or utilizing different
network paths.
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Fig. 1: Data flow graph model

One host can be modeled as a graph as shown in Figure
1. In the graph, there are five classes of nodes, and edges that
link adjacent nodes. The five classes of nodes are disk node,
data channel node, computation node, NIC node, and logical
node. A node is not associated with any attribute, but an edge
is associated with attributes describing a node’s characteristics.
Data channel nodes reflect contention among data flows. For
example, if all disks are connected to only one disk interface
adapter, maximum disk throughput may not scale linearly as
the number of disks increases due to data contention. Logical
nodes are inserted for explicit data flow start and end in a
graph model. The CPU cores are not expressed explicitly as a
node but are put implicitly as costs on edges and constraints
in the resulting formulations.

Two attributes are assigned on an edge. One is capac-
ity/bandwidth of a source node. The other is cost of a data
flow on the edge. Both attributes can be either a constant value
or a function of some parameters originating from underlying
system behaviors. Depending on two end nodes linked by an
edge, the edge has different attributes. First, the edge linking
from a logical start node to a disk node, logical edge, is a
logical link with unlimited bandwidth and zero cost function.
Second, the edge linking from a disk or data channel node
to any other node, disk edge, represents a disk I/O path
from a disk or data channel. Third, the edge linking from a

computation node to an another computation node or a NIC
node, compute edge, represents a data flow going through
computations such as GridFTP and compression computation.
Fourth, the edge linking from a NIC node to a logical end node,
network edge, represents a network path from a source node to
a destination node. Each edge is associated with a bandwidth
function and a cost function. A bandwidth function and a cost
function of an edge describe the performance throughput and
CPU resource consumption of a source node, respectively. In
the following subsections, we describe each edge’s attributes
and associated modeling in details.

1) Disk modeling: Disk edge

A disk edge is associated with disk capacity/bandwidth and
CPU load related to disk I/O operations. Even though many
parameters such as disk cache size are involved in disk I/O
bandwidth, the number of data flows per disk is the most
important variable assuming that other parameters are fixed
and not adjustable.

Equation (1) computes utilization of a disk as a function of
number of processes and disk access probability [8]. Here p is
a ratio of request data size and the stripe size of a RAID disk. If
we assume that file size or request data is bigger than the stripe
size of a disk, p can be substituted by 1. The resulting equation
is U ≃ 1

1+ γ
L

, which means the disk utilization increases to
some extent as the number of processes increases. γ is a
constant to take into account other factors in disk performance
such as block size and disk cache.

U ≃ 1
1+ 1

L ( 1
p−1+γ)

U : Utilization
L : Number of processes issuing requests
p : Probability that a request will access a given disk
γ : Empirically calibrated value

(1)

The disk throughput can be determined by Equation (2)
in which the disk utilization in Equation 1 is multiplied by
N ·SU
E(S) . The equation can be rearranged as Equation (3) after

substituting N ·SU
E(S) by α

L , where α = N · SU , since E(S), the
expected service time of a given disk request, is proportional
to L. We can determine α and γ in Equation (3) through
experimental values. The cost function for the edge is assumed
to be zero since CPUs sit idle until a read/write operation
is done and any file operation overhead can be attributed to
computation nodes.

T = U ·N ·SU
E(S)

T : Throughput
U : Utilization
N : Number of disks in a RAID disk

SU : Stripe size
S : Service time of a given disk request

(2)

T = 1
1+ γ

L
· α
L = α

L+γ

α, γ : Empirically calibrated value
(3)

If the source node is a data channel node, the disk edge is
associated with the above bandwidth function when the data
channel node has fan-in disk nodes, or the disk edge is associ-
ated with infinite bandwidth when the data channel node has



fan-out nodes. Equation (3) will be used as bandwidth function
Bd

lk() in Section II-B and approximated by a linear/quadratic
function for linear programming solver such as cplex [9].

2) Computation modeling: Compute edge

The edge whose source node is a computation node has at-
tributes of linear bandwidth and cost functions. The bandwidth
function is a function of the number of flows as in Equation
(4), and the cost function can be defined as in Equation (5).

T = αns + β
ns : Number of parallel data transfer streams

α, β : Empirically calibrated value
(4)

C(r) = αr
C : CPU load
r : Data flow rate
α : Empirically calibrated value

(5)

Equation (4) and (5) will be used as bandwidth function
Bc

lk() and cost function Cc
lk(), respectively, in Section II-B.

3) Network modeling: Network edge

The edge linking a NIC node and a logical destination node
has attributes of a throughput function and a cost function. In
order to simplify the problem, only TCP is considered and
a NIC is assumed to have a preassigned protocol property
associated with corresponding throughput function.

Several throughput models for parallel TCP streams have
been proposed to predict the performance. The simplest model
is proposed in [10] and given by Equation (6).

T ≤ min{NC, MSS×c
RTT · nt√

p}
T : Achievable throughput

NC : Capacity of NIC
MSS : Maximum segment size
RTT : Round trip time

p : Packet loss rate
nt : Number of parallel data transfer streams

(6)

If MSS×c
RTT · 1√

p is regarded as a constant, Equation (6) can be
rearranged as T ≤ min{NC,α · nt} where α = MSS×c

RTT · 1√
p .

The cost function for TCP is given by Equation (7).

C(r) = αr
C : CPU load
r : Data flow rate
α : Empirically calibrated value

(7)

Equation (6) and (7) will be used as bandwidth function
Bn

lk() and cost function Cp
lk(), respectively, in Section II-B.

B. Problem Formulation

In order to simplify the problem, we assume that a sender
and a receiver have similar hardware such that optimization on
the sender side can be applied to the receiver for end-to-end
data transfer optimization.

The overall problem-solving procedure is as follows.

• Compute parameters of capacity functions based on
empirical data.

• Formulate the modified multicommodity flow problem
based on the capacity/cost functions on edges.

• Find a solution including the number of parallel flows,
the number of required CPUs, and the number of NICs
using linear programming solver, cplex [9].

The graph model as in Figure 2b can be formally repre-
sented by a graph G = (V,E), where V is a set of vertices,
and E is a set of edges.

Objective
maximize T (8)

Subject to:
rlk ≥ 0, (l, k) ∈ E (9)
0 ≤ ns ≤ Ms,Ms is maximum number of data streams.

(10)

rlk ≤


Bd

lk(ns), (l, k) ∈ E, if Vl is a disk node
Bc

lk(ns), (l, k) ∈ E, if Vl is a computation node
Bn

lk(nt), (l, k) ∈ E, if Vl is a NIC node
(11)∑

k:(l,k)∈E

rlk − c
∑

k:(k,l)∈E

rkl = 0,

l ̸= sj , l ̸= dj , c =

{
compression ratio, if l is compression node

1, otherwise
(12)∑

k:(s,k)∈E

rsk −
∑

k:(k,s)∈E

rks ≥ T (13)

∑
k:(k,d)∈E

rks −
∑

k:(d,k)∈E

rdk ≥ T (14)

∑
k:(l,k)∈E

C(rlk) ≤ min (Nc × 100, ns ×Nd × 100) (15)

Fig. 3: Multiple flow determination algorithm

Table I gives a list of notations for mathematical formula-
tions, and the complete formulation is described in Figure 3.
The formulation in Figure 3 is mixed-integer convex program-
ming (MICP) since ns, the number of data streams, is integer
and bandwidth function Bd

lk is approximated by quadratic
functions. The objective function is given in Expression (8),
which is to maximize overall throughput of data transfer.
Expression (10) set the range of the number of data streams
per disk. Expression (11) is a bandwidth/capacity constraint on
the edges, where rlk denotes data rate on an edge (l, k) and
bandwidth functions is chosen depending on the edge type. The
flow conservation constraint given by Equation (12) ensures
that the sum of incoming data rates should be same as that
of outgoing data rates at every node. In special cases such as
compression computation, the sum of outgoing data rates can
be a fraction of that of incoming data rates. Expression (13)
and (14) constrain the total outgoing data rates from the logical



(a) ESnet 100G testbed
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(b) NERSC host graph model

Fig. 2: ESnet 100G testbed and a corresponding graph model

TABLE I: Notation for problem formulation

Notation Description
Vs Logical source node
Vd Logical destination node
Nd Number of disks
Nc Number of CPU cores
ns Number of data streams per each disk; integer variable
nt
lk Number of parallel TCP streams on an edge (l, k)

rlk Data rate on an edge (l, k)

Bd
lk(ns) Disk capacity/bandwidth of Vl, a disk node, associated with an edge (l, k)

Bc
lk(ns) Computation capacity of Vl, a computation node, associated with an edge (l, k)

Bn
lk(nt) Maximum network capacity/bandwidth of Vl, a NIC node, associated with an edge (l, k)

Cc
lk(rlk) CPU/Computation cost of Vl, a computation node, associated with an edge (l, k)

Cp
lk(rlk) CPU/Computation cost related to network protocol on Vl, a NIC node, associated with an edge (l, k)

source and to the logical destination node to be greater than or
equal to T , which is to be maximized. In this way, we can get
the solution that maximizes the overall data throughput. The
computation constraints by the number of CPU cores in the
system and the number of data flows is given by Expression
(15). Note that the formulation assume a circumstance where
the number of data flows per disk is same, but the formulation
can be easily extended to reflect different number of data flows
per disk by assigning separate variables per disk.

III. EXPERIMENTAL EVALUATION

We have conducted experiments on an ESnet 100G testbed
in two locations: NERSC (Oakland, CA) and StarLight
(Chicago, IL). Figure 2a shows the detailed configuration of
the testbed. At NERSC, there are 5 hosts of three different
hardware configurations. Three hosts, nersc-diskpt-1, nersc-
diskpt-2, and nersc-diskpt-3, have Intel Xeon Nehalem E5650
(2 x 6 = 12 cores), multiple 10G NICs, and 4 RAID 0 sets of
4 drives. Other two hosts do not have RAID drives but have
only a local disk. On the other hand, there are 3 hosts without
disk arrays at StarLight. These hosts have 2 AMD 6140 (2 x
8 = 16 cores) and multiple 10G NICs, but do not have RAID
disks. The hosts at StarLight have only local disks, which are
slow (i.e. 300MB/s) and thus can not saturate even a 10G link.
For such reasons, we conducted disk-to-memory tests where
all data flows departing from hosts at NERSC are directed
to /dev/null on hosts at StarLight so that we can assume that
the hosts at StarLight has same disks as those of the hosts at
NERSC.

We have chosen various size of datasets including lots of
small files (LOSF) dataset for evaluation of optimizing the
end-to-end data transfer rates. We use four different datasets

– ten thousands of 1 MB files, one thousand 10 MB files,
one hundred 100 MB files, and ten 1 GB files such that total
amount of each dataset would be around 10 GB. The files were
synthetically generated using /dev/urandom in Linux.

To measure the disk performance, we use dd and iozone
as disk I/O benchmark tools. In addition, we use nmon and
netperf as benchmark tools to measure CPU load and network
performance, respectively.

A. Subsystem Tests for Model Parameter Setting

We first conducted basic disk I/O performance tests using
dd disk utility to obtain baseline performance of disk through-
puts. Figure 4 shows the disk read throughputs (∼500MB/s)
of 4 RAID sets attached to hosts at NERSC. The theoretical
upper limits of each RAID disk is around 1.2 GB/s since the
RAID disk is composed of four disks with 300 MB/s read
performance. Even though there are performance variances
among disks, we ignore the variances for simplicity in this
paper.

Next, we measured the multithread disk read performance
depending on file size and the number of threads to determine
the value of α, γ in Equation (3). Figure 5 shows that disk
throughput decreases as the number of streams increases re-
gardless of applications’ read unit sizes (i.e., 1MB and 10MB).
We conducted experiments in case of sequential disk read.
Equation (3) determined by these results would be Bd

lk(·) in
Figure 3 where ns equals L, and l is a disk node.

However, as Figure 6 shows, the aggregate disk throughput
using multiple disks does not scale linearly due to channel
contention. We model the channel contention using a data
channel node and associated bandwidth function as in Equation
(3).
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Fig. 4: Disk throughput at NERSC using dd: similar disk
throughput with varying block size
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Fig. 5: Disk throughput at NERSC using iozone: decreasing
disk throughput with increasing number of data streams

We measured the application (i.e., GridFTP) throughput
while varying the number of data streams as in Figure 7.
We can model GridFTP throughput through Equation (4)
by ignoring the decreasing throughput after hitting the peak
because that is due to disk bottleneck which is already modeled
by disk edges. Even though the data movement tool GridFTP
is the only application used for the end-to-end data transfers in
this paper, we can model any applications such as compression
in a similar way through Equation (4) and (5).

Regarding network edges, Figure 8a and 8b show the
throughput and CPU load of TCP protocol, respectively.
These TCP performance results are measured by netperf,
and memory-to-memory transfer over a 10G NIC. Figure
8a shows that network transfer throughput is saturated with
3 TCP streams and is near the full capacity of the 10G
NIC. Obviously, these protocol behaviors can be modeled by
Equation (6) and (7).

B. Results and Discussion

We have compared our model-based optimization approach
with two cases: (1) GridFTP with only -fast option, (2)
GridFTP with auto-tuning optimizations currently used by
Globus Online [11]. Globus Online’s auto-tuning algorithm
uses different GridFTP optimization options depending on file
size. If the number of files is more than 100 and an average file
size smaller than 50 MB, it uses GridFTP with concurrency=2
files, parallelism=2 sockets per file, and pipelining=20 requests
outstanding at once. If file size is larger than 250 MB, Globus
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Fig. 6: Multiple disk throughput at NERSC using iozone:
increased throughput using multiple disks, but slightly under
the total sum of individual disks
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Fig. 7: GridFTP throughput: increasing throughput until disk
throughput or data contention among multiple data streams
becomes a bottleneck
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(a) TCP throughput
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(b) TCP CPU load

Fig. 8: TCP protocol characteristics

Online uses options of concurrency=2, parallelism=8, and
pipelining=5. In all other cases, the default setting is used:
concurrency=2, parallelism=4, and pipelining=10.

Figure 9 shows the experimental results of all three cases.
The data transfer experiments have been done from NERSC to
StarLight by varying the number of hosts at NERSC from 1 to
5 and the number of hosts at StarLight from 1 to 3. The num-
bers of hosts at NERSC and StarLight are kept same except
when the number of hosts at NERSC is greater than 3. In such
cases, the number of hosts at StarLight is set to 3. We compute
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(b) Globus Online transfer
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Fig. 9: Data transfer throughput comparison

the data transfer throughput by measuring the total time taken
for transferring certain datasets. Globus Online outperforms
the naive GridFTP especially in the cases of 1 MB and 10 MB
datasets. Our model-based optimizations are 3-4 times faster
than Globus Online in most cases, and 8 times faster than
Globus Online, particularly, in the case of 1 MB datasets. It is
mainly because our model can effectively identify the number
of data flows based on disk throughput performance models
and utilize data flow parallelism through multiple disks. For
instance, with -cc=2 options, Globus Online can only utilize
only two data streams from disks, which has a lot room for
improvement, and cannot utilize the advantages of multiple
disks. Based on models, our formulation in Figure 3 could
find the proper number of data flows, 8, 6, 3, 2 in the case
of 1 MB, 10 MB, 100 MB, 1 GB files, respectively. The
data transfer throughput scales well as the number of hosts
at NERSC increases up to 3 hosts. In case of 4 and 5 hosts at
NERSC, the increasing rate slows down because those hosts
have only local disks. In addition, our formulation could find
a solution suggesting using multiple NICs in case that the
aggregate throughput is beyond the capability of a 10G NIC.

The advantages of using model-based optimization formu-
lations are as follows: (1) it can suggest the future hardware
plan optimized for overall data transfer throughput just by
simulating different configurations of hardware as well as soft-
ware, (2) it can be used by systems such as Globus Online and
other intelligent data transfer managers to adaptively optimize
transfers for varying CPU resource availability and network
status, and (3) it can provide basic models for simulating bulk
data movement in next generation networks.

IV. CONCLUSIONS

We first model all the system components involved in
end-to-end data transfer as a graph. We then formulate the
problem whose goal is to achieve maximum data transfer
throughput using parallel data flows. Our proposed formu-
lations and solutions are evaluated through experiments on
the ESnet testbed. The experimental results show that our
approach is around four times faster than Globus Online in
most datasets. Our models and formulations are extensible to
more complex cases such as more deep software stacks and
more complex system architectures (e.g., cluster). Accordingly,
we will continue our research toward cluster-wide session

control and weighted CPU scheduler based on parameters
determined by optimization formulation.
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